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Abstract

This paper proposes an integralQ-learning for continuous-time (CT) linear time-invariant(LTI) systems, which solves a linear quadratic
regulation (LQR) problem in real time for a given system and avalue function, without knowledge about the system dynamics A andB.
Here,Q-learning is referred to as a family of reinforcement learning methods which find the optimal policy by interaction with an uncertain
environment. In the evolution of the algorithm, we first develop an explorized policy iteration (PI) method which is ableto deal with known
exploration signals. Then, the integralQ-learning algorithm for CT LTI systems is derived based on this PI and the variants ofQ-functions
derived from the singular perturbation of the control input. The proposedQ-learning scheme evaluates the current value function and the
improved control policy at the same time, and are proven stable and convergent to the LQ optimal solution, provided that the initial policy
is stabilizing. For the proposed algorithms, practical online implementation methods are investigated in terms of persistency of excitation
(PE) and explorations. Finally, simulation results are provided for the better comparison and the verification of the performance.
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1 Introduction

In engineering terminology, reinforcement learning (RL)
is a class of biologically-inspired computational methods
to improve the agent’s action in a given uncertain environ-
ment (Powell, 2007; Si, Barto, Powell, & Wunsch, 2004;
Sutton & Barto, 1998). It adjusts the agent’s current ac-
tion by interacting with the environment: first it observes
the rewards from the environment, and then, modifies the
action based on the observed information to maximize its
current and future rewards. This procedure is exactly the
same as and actually comes from the learning mechanisms
of mammals—they interact with the environment and mod-
ifies their own actions accordingly to improve their received
rewards, leading to better survival chances. These RL algo-
rithms are investigated at first for a finite Markov decision
process (MDP) (Kaelbling & Moore, 1996; Sutton & Barto,
1998), and later, for continuous-time (CT) and discrete-time
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(DT) dynamic systems in both control and machine learn-
ing communities (Balakrishnan, Ding, & Lewis, 2008; Si
et al., 2004; Lewis & Vrabie, 2009; Wang, Zhang, & Liu,
2009). These RL methods, also known as approximate dy-
namic programming or adaptive critics, overcome ‘the curse
of dimensionality’ of traditional dynamic programming by
forward-time iteration (Si et al., 2004), and are considered
asadaptive optimal control(Lewis & Vrabie, 2009; Si et al.,
2004) or model-predictive control scheme (Bertsekas, 2005;
Lee & Lee, 2004; Zhang, Huang, & Lewis, 2009) in control
engineering perspectives. By employing such RL methods,
one can obtain the optimal policy in an uncertain noisy en-
vironment with less computational burden.

Among the RL methods,Q-learning, first proposed by
Watkins (1989) in a finite MDP framework, has been rec-
ognized as one of the most promising and widely used RL
methods in various fields of engineering (Powell, 2007; Sut-
ton & Barto, 1998; Wang, Zhang, & Liu, 2009). For Q-
learning in a finite MDP, the convergence to the optimal pol-
icy and its corresponding action value function was given by
Watkins & Dayan(1992) with a sufficient number of explo-
rations. Inspired byQ-learning for a finite MDP,Q-learning
schemes for uncertain DT dynamic systems, also known
as action-dependent heuristic dynamic programming (AD-
HDP), are investigated by many researchers (Al-Tamimi,

Preprint submitted to Automatica 13 March 2012



Abu-Kalaf, & Lewis, 2007; Balakrishnanet al., 2008; Bert-
sekas & Tsitsiklis, 1996; Bradtke & Ydstie, 1994; Landelius,
1997; Lewis & Vrabie, 2009; Lewis & Vamvoudakis, 2010;
Prokhorov & Wunsch, 1997; Si et al., 2004; Wang, Zhang,
& Liu , 2009; Webos, 1992). However, many of the early
Q-learning methods for DT dynamic systems did not guar-
antee the convergence to the optimal solution (Prokhorov
& Wunsch, 1997; Si et al., 2004; Wang et al., 2009; We-
bos, 1992). To solve this problem, researches on develop-
ing convergence-guaranteedQ-learning are carried out for
DT linear quadratic regulation (LQR) problems (Bradtke &
Ydstie, 1994; Landelius, 1997), DT zero-sum games (Al-
Tamimi et al., 2007), and DT output feedback optimal con-
trol (Lewis & Vamvoudakis, 2010). In their works, the per-
sistence of excitation (PE) condition is needed for parameter
convergence and online implementation.

At each decision step,Q-learning for a finite MDP ei-
ther randomly explores the state-action space to update the
action value for the unexplored state-action pair, or exploit
the action values to modify and improve the current pol-
icy. Note that without exploration, only some limited areas
of action values are estimated and hence, the final updated
policy could not be optimal in the whole state-action space.
(Sutton & Barto, 1998). For DT LTI systems, similar results
can be found from the works ofAl-Tamimi et al. (2007);
Bradtke & Ydstie(1994); Lewis & Vamvoudakis(2010). In
their works, exploration, so-called probing noise, is neces-
sary to prevent the PE condition from being lost. Without
PE, the learning agent cannot update the next policy any-
more. Moreover, inQ-learning with batch least squares (LS)
(Al-Tamimi et al., 2007; Lewis & Vamvoudakis, 2010), the
poor excitation introduces the considerably large numerical
errors at the policy evaluation step since it contains an in-
verse operation of a matrix where the condition number may
become very large due to the poor excitation. These corre-
spond to theQ-learning for a finite MDP framework where
exploration noise should be suitably injected to improve the
performance of the agent.

On the other hand, the earlyQ-learning schemes for CT
dynamic systems were proposed independently byBairdIII
(1994) andDoya(2000). Although these early methods can
be applied to the general uncertain autonomous nonlinear
systems, they do not guarantee the stability and convergence
to the optimal solution. From the different perspectives,Mur-
ray, Cox, Lendaris, & Saek(2002) proposed an RL method
for CT LQR problems, which needs the measurements of
the state derivatives for online implementation. Inspiredby
the works ofMurray,et al.(2002), Vrabie, Pastravanu, Abu-
Kalaf, & Lewis (2009) proposed a derivative-free online RL
method for CT LQR problems. This class of RL schemes
is also called policy iteration (PI), and is proven to be sta-
ble and convergent to the optimal solution, provided that the
initial policy is stabilizing (Murray, et al., 2002; Vrabie et
al., 2009). However, they requires the exact knowledge of
the input coupling terms in the system dynamics to update
the control policy. This restriction also exists in similarRL
methods for CT nonlinear systems (Dong & Farrell, 2009;
Lewis & Vrabie, 2009) and the synchronous PI recently de-
veloped byVamvoudakis & Lewis(2010).

Inspired by the work ofLewis & Vrabie(2009), our pre-
vious work proposed an RL algorithm to solve a CT LQR
problem without knowing the system dynamicsA and B
(Lee, Park, & Choi, 2009). However, the method only pro-
vides an approximate solution to the LQR problem, and
the internal signal becomes impulsive as the target approxi-
mate solution approaches to the exact one. Recently,Mehta
& Meyn (2009) proposed a CTQ-learning algorithm with
the connection to Pontryagin’s principle, but the stability
and convergence properties of the method have not yet been
proven as well. In summary, to the best authors’ knowledge,
all the RL methods for CT dynamic systems either requires
the perfect knowledge of the input coupling terms, or do not
guarantee the stability and convergence.

Motivated by the work ofVrabie et al. (2009), this pa-
per presents the integralQ-learning scheme which solves a
given CT LQR problem without knowing the system dynam-
ics A andB. By simultaneously evaluating the current value
function and the improved control policy, the proposedQ-
learning agent solves a CT LQR problem with guaranteed
stability and convergence. More specifically,

• In Section 2, the LQR problem and itsQ-function are first
addressed and the variants of thisQ-function are presented
via singular input perturbation. The exploration and PE
with this input perturbation are also discussed.
• In Section 3.1–3, explorized PI is proposed and based

on the results, the main integralQ-learning is presented.
Here, explorized PI can deal with explorations, which is
not for the conventional PI, and the integralQ-learning
essentially requires this exploration to obtain the improved
control policy without knowing the matrixB.
• In Section 3.4, The exploration and PE will be further

investigated with the connection to least-squares online
implementation of the proposed algorithms.
• In Section 4, to verify the effectiveness of the proposed

algorithms, simulation results are provided with the com-
parison to the PI ofVrabieet al. (2009).

2 Preliminaries

2.1 Notations & Mathematical Background

In this paper, we denoteZ+ the set of nonnegative in-
tegers andMm×n the set of allm× n constant matrices.
Also, for a symmetric matrixX ∈M

n×n, λM(X) andλm(X)
denote the maximum and minimum eigenvalues ofX, re-
spectively. Throughout the paper, the spectral norm and Eu-
clidean norm, defined as‖A‖ := λM(ATA)1/2 and ‖x‖ :=
(xTx)1/2, respectively, will be used for a matrixA∈M

m×n

and a real vectorx∈R
n. Here,AT denotes the transpose of

A. For a sequence{ak}
∞
k=0 with ak ∈ R

n, ∆ak represent the
difference∆ak = ak+1−ak, and for a continuously differen-
tiable functionalf (x,y) with x∈ R

n andy∈ R
m, ∇x f (x,y)

denotes the gradient off (x,y) with respect tox.
For compact representations, we will use vec(X) for X ∈

M
m×n as a vectorization map from a matrix into anmn–

dimensional column vector. This vec(X) stacks the columns
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of X on the top of one another. Also, we let vec+(Y) be
defined as an operator which maps a symmetric matrix
Y ∈M

n×n into a vector with dimensionqn (:= n(n+1)/2)
by stacking the columns corresponding to the diagonal and
upper triangular parts ofY on the top of another where
the off-diagonal terms ofY are doubled. Here, we define
qn := n(n+ 1)/2 for any n ∈ N. Also, we letA⊗B be a
Kronecker product ofA and B, and denote the Kronecker
product ofA itself, i.e., A⊗A by A. The key properties for
these three operations are

1. vec(AXB) = (BT ⊗A)vec(X);
2. for every x, y ∈ R

n, there exists a permutation matrix
U ∈M

mn×mn such that(x⊗ y) =U(y⊗ x);
3. for everyY =YT ∈M

n×n, there is a matrixΓ ∈M
n2×qn

with rank(Γ) = qn such that vec(Y) = Γvec+(Y) (Murray,
et al., 2002).

Here, the dimensions of the matricesA, B, andX, and the
column vectorsx and y are assumed to be all compatible.
Note thatxTAy= (y⊗x)T vec(A) = vec(A)T(y⊗x) holds as
a special case of Property 1.

2.2 Optimality Principle & Q-Function for LQR

In this paper, we consider the infinite horizon LQR prob-
lem for the following CT LTI system

ẋt = Axt +But , x(0) = x0 (1)

with the value function

Vu(xt , t) =
∫ ∞

t
c(x,u) dτ (2)

for a policy u, wherext ∈ R
n and ut ∈ R

m are the state
and input vectors;A∈M

n×n andB∈M
n×m are the system

and input coupling matrices of the system (1);c(x,u) is the
quadratic cost function defined asc(x,u) := xTSx+uTRufor
someS=CTC≥ 0 (C∈Mp×n) andR> 0. Here,ut , u(t) and
simply u will be used interchangeably for the input of the
system (1), and the following will be assumed throughout
the paper (Lewis & Syrmos, 1995):

Assumption 1 The triple (A,B,C) is at least stabilizable
and detectable.

For a given policyu=−Kx, defineAK as the closed-loop
matrixAK :=A−BK. If u=−Kx is stabilizing for the system
(1), then, the value function (2) is finite (Kleinman, 1968),
and without loss of generality,Vu can be represented as the
time-invariant formulaVu(xt) = xT

t Pxt . Now, let V∗(x) =
xTP∗xandu∗=−K∗xbe the optimal value function and con-
trol, that is,V∗(x) := minuVu(x) and u∗ := argminuVu(x).
Then, by Bellman’s optimality principle,V∗(x) satisfies the
optimality equation (Lewis & Syrmos, 1995; Lewis & Vra-

bie, 2009):

V∗(xt) = min
u(τ),

τ∈[t,t+T]

[

∫ t+T

t
c(x,u) dτ +V∗(xt+T)

]

, (3)

which is the basis of the CT PI ofVrabieet al. (2009) and
also the connection betweenV∗(xt) and the CTQ-function
Q∗(x,u). Dividing both sides of (3) byT and limitingT→
0+ yields the infinitesimal version thereof:

min
u

(

c(x,u)+ V̇∗(x)
)

= 0. (4)

Mehta & Meyn(2009) mentioned that the CTQ-function
Q∗(x,u) is the function of two variables within the minimum
on the left side of (4) which is closely related to Hamiltonian
H (x,u, p) = c(x,u)+ pT(Ax+Bu). Therefore,Q∗(x,u) is
given byQ∗(x,u) = c(x,u)+V̇∗(x), and (4) can be rewritten
in terms of theQ-function as

min
u

Q∗(x,u) = 0, (5)

so thatu∗ can be obtained by minimizingQ∗(x,u). Here, by
V̇∗(x) = (∇xV∗(x))T(Ax+Bu), Q∗(x,u) can be represented
as the following quadratic formula:

Q∗(x,u) =
[

xT uT
]

[

H∗11 H∗12
⋆ H∗22

][

x
u

]

(6)

whereH∗11 := ATP∗+P∗A+S, H∗12 := P∗B, andH∗22 := R.
By solving∇uQ∗(x,u) = 0, one obtains the optimal solution
u∗ minimizing (6) as

u∗ =−K∗x=−(H∗22)
−1(H∗12)

Tx, (7)

which is a key equation of the proposedQ-learning. From (7)
and the definitions ofH∗12 andH∗22, one hasK∗ = R−1BTP∗.
Furthermore, substituting the minimum solution (7) into (5)
and rearranging the equation according to the definitions of
H∗11, H∗12, and H∗22, one obtains the well-known algebraic
Riccati equation (ARE):

ATP∗+P∗A−P∗BR−1BTP∗+S= 0, (8)

which has the unique solutionP∗ by Assumption 1 (Lewis &
Syrmos, 1995). These equations (6)–(8) actually provide the
relations betweenQ-functionQ∗(x,u) and the optimal solu-
tion (V∗,u∗). Note that there is no direct connection between
H∗11 of Q∗(x,u) andu∗ (see (7)), and only (8) provides the de-
pendent relationH∗11 = H∗12(H

∗
22)
−1(H∗12)

T = (K∗)TR(K∗).
That is, though it contains the information about(A,P∗), H∗11
is an unnecessary redundant term when the learning process
of u∗ is considered. This motivates the introduction ofε-
integralQ-function in the next section which contains the
information about(P∗,H∗12,H

∗
22), instead of(H∗11,H

∗
12,H

∗
22).
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2.3 ε-Integral Q-functions

To introduceε-integralQ-function, which is closely re-
lated with theQ-function Q∗(x,u), consider the additional
input dynamics

εu̇= v, u(0) = u0 (9)

perturbed byε, whereε > 0 is a small constant, andvt ∈R
m

is the virtual policy which drivesu. Then, the input dynamics
(9) has the following property:

Lemma 1 Suppose v=−R−1KT
1 x−R−1K2u+wt is applied

to (9) with some K1, K2, and wt . Then, the additional dy-
namics(9) can be rewritten as u= T ε

K2
(s)

[

−KT
1 x+Rwt

]

,

with the Laplace variable s whereT ε
K2
(s) is the low pass

filter defined byT ε
K2
(s) := (εsR+K2)

−1.

This lemma will be widely used in the paper, and the proof
is trivial (just take the Laplace transform of (9) withv given
in Lemma 1). In the sequel, consider the LQR problem for
the dynamics (1) and (9) with the compact representation:

ż= Fz+Gεv, z(0) = z0 (10)

and the quadratic value function, denoted byQv
I (xt ,ut ,ε),

for the system (10)

Qv
I (xt ,ut ,ε) :=

∫ ∞

t
c(x,u)+ vTRv dτ, (11)

whereF :=
[

A B
0 0

]

, Gε := [ 0 Im/ε ]T z := [ xT uT ]T , and
z0 := [ xT

0 uT
0 ]T . Here,c(x,u) can be rewritten by the sim-

ple quadratic formc(x,u) = zT Σzwith Σ := diag{S,R}. This
LQR problem is theoretically involved with the singular
perturbation theory and cheap optimal control (Kokotovic,
Khalil, & J. O’Reilly, 1986) and since Assumption 1 trivially
implies the stabilizability and detectabillity of(F,Gε ,Σ1/2),
by the arguments in Section 2.2 (or by the singular perturba-
tion theory), there exists the unique solutionQ∗I (x,u,ε) and
v∗ which are given as follows:

Q∗I (x,u,ε) = [ xT uT ]

[

Hε
11 εHε

12
⋆ εHε

22

][

x
u

]

, (12)

v∗(t) =−R−1(Hε
12)

Tx(t)−R−1Hε
22u(t). (13)

whereHε :=
[

Hε
11 εHε

12
⋆ εHε

22

]

≥ 0 is the solution of the ARE:

FTHε +HεF +Σ =

[

Hε
12R
−1(Hε

12)
T Hε

12R
−1Hε

22
⋆ Hε

22R
−1Hε

22

]

, (14)

which can be block-wisely decomposed as

ATHε
11+Hε

11A−Hε
12R
−1(Hε

12)
T +S= 0, (15)

εATHε
12+Hε

11B−Hε
12R
−1Hε

22 = 0, (16)

ε(BTHε
12+(Hε

12)
TB)−Hε

22R
−1Hε

22+R= 0. (17)

Here, we considerQ∗I (x,u,ε) as theε-integralQ-function for
the LQR problem (1)–(2). Now, define theε-approximate
Q-functionQ∗(x,u,ε) asQ∗(x,u,ε) := (v∗)TRv∗ with abuse
of notation. Then, substituting (13) and (15) intoQ∗(x,u,ε)
yields the following formula

Q∗(x,u,ε) = [ xT uT ]

[

ATHε
11+Hε

11A+S Hε
12R
−1Hε

22
⋆ Hε

22R
−1Hε

22

][

x
u

]

(18)

which corresponds to (6) ofQ∗(x,u). Furthermore, define the
ε-approximate optimal policy(uε)∗ as the policyugenerated
by (9) with v= v∗. Then, by Lemma 1, one has

(uε)∗ =−T
ε

Hε
22
(s)

[

(Hε
12)

Tx
]

, (19)

the approximate version of (7). In fact,Q∗I (x,u,ε) is related
with Vu(x) andQ∗(x,u,ε) underu= (uε)∗:

Proposition 1 Consider theε-integral Q-function(11)with
the system(10). Then, Q∗I (x,u,ε) ≥ 0 given by(12) satis-
fies Hε

11≥ 0, Hε
22≥ 0, and under u= (uε)∗ with the initial

condition u(t) = ut ,

Q∗I (xt ,ut ,ε) =
∫ ∞

t
Q∗(xτ ,uτ ,ε) dτ +Vu(xt). (20)

Proof. QI (x,0,ε) = xTHε
11x≥ 0 andQI (0,u,ε) = uTHε

22u≥
0 provesHε

11 ≥ 0 and Hε
22 ≥ 0, respectively. (20) can be

obtained by substitutingQ∗(z,ε) = (v∗)TRv∗ into (11). ✷

Now, consider the limit caseε→ 0 and denoteH j k ( j,k=
1,2, j ≤ k) by H j k := limε→0+ Hε

j k. Then, we state the fol-
lowing lemma and proposition concerning the convergence
of Q∗(x,u,ε), Q∗I (x,u,ε), and(uε)∗.

Lemma 2 Consider theε-integral function Q∗I (x,u,ε) in the
limit caseε → 0+. Then, it satisfies H11 = P∗, H12 = H∗12,
and H22 = H∗22.

Proof. This can be easily proven by taking the limitsε→ 0+

of all those equations (15)–(17) and rearranging the results.
For a complete proof, see Lemma 1 inLeeet al.(2009). ✷

Proposition 2 Consider the Q-functions Q∗(x,u), Q∗(x,u,ε),
and Q∗I (x,u,ε) defined above with the system(10). Then, for
all (x,u)∈Rn+m we have in the limitε→ 0+ the followings:

• Q∗(x,u,ε)→Q∗(x,u),

• Q∗I (x,u,ε)→V∗(x), (uε)∗→ u∗.
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Proof. The proof can be done by taking the limitsε→ 0+ of
(19)–(20) and applying Lemma 2 to the resulting equations.
Here, note that limε→0+ T ε

Hε
22
(s) = H−1

22 . ✷

Remark 1 Q∗I (x,u,ε) is actually derived based on the spirit
of Q-functions presented byBradtke & Ydstie(1994); Lewis
& Vrabie (2009); Sutton & Barto(1998). Minimized with
respect to the action or controlu, theQ-functions in the refer-
ences actually become the optimal value function. Similarly,
Q∗I (x,u,ε) becomesV∗(x) when optimized with respect to
ε > 0 in the input dynamics (9). Note that asε → 0+, the
integral term in (20) vanishes andQ∗I (x,u,ε)→V∗(x), the
minimizing solution in terms ofε > 0.

2.4 Explorations

For the discussion of explorations, assume thatwt is any
given non-zero measurable signal which is exactly known
a priori and bounded bywM > 0, i.e., supt≥0‖wt‖ ≤ wM .
Throughout the paper, thiswt will be called an exploration
signal (or simply exploration) which plays a key role in both
consistently exciting the signalxt and relaxing the assump-
tion of perfectly knownB, as will be presented in Section
3. From now on, suppose both a virtual policyvt and an
explorationwt are applied at the same time to the input dy-
namics. That is, instead of (9), consider the following input
dynamics, explored bywt :

εu̇= v+w, u(0) = u0 (21)

Then, similarly to (10), the dynamics (1) and (21) can be
compactly rewritten as

ż= Fz+Gε [v+w], z(0) = z0. (22)

Note that (21) can be represented asu=T ε
K2
(s)[−KT

1 x+Rw]

by Lemma 1 whenv=−R−1KT
1 x−R−1K2u is applied with

someK1 andK2. Applying this fact into (22), one obtains

ẋ= Ax+B ·
{

T
ε

K2
(s)[−KT

1 x+Rw]
}

. (23)

If v is a stabilizing policy for the system (10), (23) can be
further simplified by lettingK2 = R and limiting ε → 0+

(Kokotovic et al., 1986) as shown below:

ẋ= Ax+B[u+w], x(0) = x0, (24)

whereu is given by u = −Kx with the gain matrixK =
R−1KT

1 . For the investigation ofwt , the following assumption
is needed:

Assumption 2 The exploration w is piecewise constant
where the transitions are allowed only at the discrete time
instants(t, t +T, t +2T, t +3T, · · · ).

This assumption will be used only in Section 3.4 where
some conditions onwt of (24) are presented for the on-
line implementation of the proposed algorithms. Applying

u=−Kx andwt satisfying Assumption 2 to (24) and defin-
ing xk := xτ+kT andwk := wτ+kT for someτ ≥ 0 andT >
0, one can reformulate (24) asxk+1 = Adxk +Bdwk where
Ad := eAKT , Bd := EdB, andEd :=

∫ T
0 eAKt dt. Furthermore,

expandingxk+1 := xk+1⊗xk+1 by using the Kronecker prod-
uct properties shown in Section 2.1, one has the following
DT equivalent dynamics in terms ofxk:

xk+1 = Adxk+
[

Ξ Bd
]

ϖk (25)

whereΞ :=
[

I U
]

(A⊗Bd) andϖk :=
[

(xk⊗wk)
T wT

k

]T
∈

R
mn; U is the permutation matrix already shown in Section

2.1. Here, (25) plays a central role in the analysis of explo-
ration in terms of the notion of PE precisely defined below:

Definition 1 (Willems et al., 2005) A bounded DT signal
sk ∈ R

r (k ∈ Z+) is persistently exciting of order L∈ N

if there are no a1, a2, ..., aL ∈ R
r , not all zero, such that

∑L
l=1aT

l sk+l−1 = 0 for all k ∈ Z+.

Proposition 3 Assume a bounded DT signal sk ∈ R
r (k ∈

Z+) is persistently exciting of order L∈N. Then, there exist
β1, β2 > 0 such that for all k∈ Z+,

β1I ≤
L−1

∑
l=0

sk+l s
T
k+l ≤ β2I . (26)

Proof. Sincesk ∈ R
r is bounded, so is∑L−1

l=0 sk+l sT
k+l , the

existence ofβ2 > 0. Considering the quadratic formula
xT(∑L−1

l=0 sk+l sT
k+l )x= ∑L−1

l=0 (x
Tsk+l )

2 for any nonzero vector
x, by PE ofsk and 2xy≤ x2+ y2, one has

0 6=

(L−1

∑
l=0

xTsk+l

)2

≤ L
L−1

∑
l=0

(xTsk+l )
2. (27)

Therefore,∑L
l=0sk+l sT

k+l is positive definite and the existence
of β1 > 0 is proven. ✷

3 Main Results

In this section, we first present the explorized policy it-
eration algorithm, and then, based on the results, develop
the novel integralQ-learning scheme. The practical imple-
mentations of the algorithms based on least squares are also
discussed in relation to the explorationw.

3.1 Explorized Policy Iteration

The proposed explorized PI is aimed at finding the opti-
mal solutionsV∗(x) andu∗ online for the system (23) with
the known explorationwt and uncertain/unknown system
matrix A. The distinguishing feature of this algorithm from
the PI proposed byVrabie et al. (2009) lies in the explo-
rationwt . By virtue of wt , the agent can autonomously ex-
plore the state-space to efficiently update the policy and its
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—- Algorithm 1: Explorized Policy Iteraion ———————-
1: Let P0 = 0 andu1 =−K1x be any stabilizing policy.
2: i← 0
3: do {
4: i← i+1
5: Let wt be any nonzero exploration.
6: Apply the inputu= ui with explorationwt to (24).
7: Policy Evaluation: Find Vi(x) = xTPix satisfying

Vi(xt)+2Φi(t,T) =
∫ t+T

t
c(x,ui) dτ +Vi(xt+T) (28)

whereΦi(t,T) =
∫ t+T

t
xTPiBw dτ. (29)

8: Policy Improvement:

Ki+1 = R−1 BTPi , ui+1(t) =−Ki+1xt (30)

9: } until ‖Pi−Pi−1‖< δ .
——————————————————————————–

value function. To deal with the exploration, an additional
term, denoted byΦi(t,T) , should be incorporated into the
PI of Vrabieet al. (2009) as shown in Algorithm 1.

In Algorithm 1,Vi(xt) = xT
t Pi xt is the value function for

the policyui . Note that ifw(t)≡ 0 for all the iterations, Algo-
rithm 1 becomes the PI ofVrabieet al.(2009). Now, we will
prove the stability and convergence of Algorithm 1. For no-
tational convenience, defineAi , Mi , andCi asAi := A−BKi ,
Mi :=S+KT

i RKi , andCi := ‖RKi‖/λm(Mi). Then, (24) with
ui =−Kix can be represented as ˙x= Aix+Bw.

Lemma 3 If Ai is stable, then, one step recursion(28)–
(30) of Algorithm 1 is equivalent to solving the following
Lyapunov equation for Pi > 0:

(Ai)
TPi +PiAi =−Mi . (31)

Proof. Assume thatAi is stable. Then, forMi > 0, there
is Pi > 0 such that (31) holds. Considering the Lyapunov
functionVi(xt) = xT

t Pixt and its derivativėVi(xt)= xT
t

[

AT
i Pi+

PiAi
]

xt +2uT
i+1Rwalong the system ˙x= Aix+Bw, one has

∫ t+T

t
xTSx+uT

i Rui dτ =

∫ t+T

t
xT

τ Mixτ dτ

=−

∫ t+T

t
V̇i(xτ )−2xT Pi Bw dτ

=Vi(xt)−Vi(xt+T)+2Φi(t,T),

which completes the proof.✷

Theorem 1 Suppose S> 0 and (Vi ,ui) is updated by Al-
gorithm 1. If the initial policy u1 is stabilizing, then, Ai is
stable and the closed-loop systemẋ= Aix+Bw is uniformly
ultimately bounded (UUB)∀i ∈N, with each ultimate bound
‖x‖ ≤ 2wMCi for i 6= 1. Furthermore, as i→ ∞, Vi and ui
converge to the optimal solution V∗ and u∗, respectively.

Proof. This is proven by mathematical induction. First, as-
sumeAi is stable and consider the Lyapunov function candi-

– Algorithm 2: ε-Approximate Integral Q-learning ————–

1: LetH [0]
11 = 0 andu=T ε

0 (s)
[

−(H [0]
12)

Tx+Rw
]

be any stabilizing

policy whereT ε
0 (s) = (εsR+H [0]

22)
−1.

2: i← 0
3: do {
4: i← i+1
5: Let wt be any nonzero exploration.

6: Apply the inputu=T ε
i−1(s)

[

− (H [i−1]
12 )Tx+Rw

]

to the system
ẋ= Ax+Bu.

7: Policy Evaluation: Find Q[i]
I (xt ,ut ,ε) = zT

t Hε
i zt satisfying

Q[i]
I (xt ,ut ,ε)+2Φi(t,T,ε) (32)

=

∫ t+T

t

[

c(x,u)+Qi (x,u,ε)
]

dτ +Q[i]
I (xt+T ,ut+T ,ε),

whereΦi(t,T,ε) =
∫ t+T

t

[

xTH [i]
12w+uTH [i]

22w
]

dτ.

8: Policy Improvement:

T
ε

i (s) = (εsR+H [i]
22)
−1 (33)

u= T
ε

i (s)
[

− (H [i]
12)

Tx+Rw
]

(34)

9: } until
∥

∥Hε
i −Hε

i−1

∥

∥< δ .
——————————————————————————–

dateVi(xt) = xT
t Pixt for the i-th system ˙x= Aix+Bw. Then,

taking the time derivative ofVi(xt) and following the similar
procedure ofVrabieet al. (2009), one obtains

V̇i(x)≤−xTMix−2xTRKi w (35)

where Lemma 3 provides the substitution of (31) in the
procedure of the derivation. SinceS> 0 is assumed,Mi is
obviously positive definite, so one has from (35)

V̇i(x)≤−λm(Mi)‖x‖
2+2wM ‖RKi‖‖x‖ . (36)

Therefore,V̇i(xt)< 0 holds forx satisfying‖x‖> 2wM ·Ci .
By Lyapunov’s theorem (Khalil, 2002) and induction, this
provesAi is stable and the system ˙x = Aix+Bw is UUB
with the ultimate bound 2wMCi , for all i ∈ Z+. Now, by the
equivalence of (31) andKleinman(1968)’s Newton method,
the convergenceVi →V∗ andui → u∗ can be proven under
an initial stabilizingu1 andS> 0 (Vrabieet al., 2009). ✷

3.2 ε-Approximate Integral Q-Learning

By applying Algorithm 1 to the system (22) with the
ε-integralQ-function (11), we derive in this subsectionε-
approximate integralQ-learning which is shown in Algo-
rithm 2 as an approximate version of the proposed integral
Q-learning. When Algorithm 1 is applied to (22) and (11),
the virtual policyv= vi at i-th iteration is given by

vi =−R−1(H [i−1]
12 )Tx−R−1H [i−1]

22 u. (37)

Then, one obtains (33)–(34) by substituting (37) into (22)

and applying Lemma 1. In Algorithm 2,Q[i]
I (xt ,ut ,ε) =
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zT
t Hε

i zt is theε-integralQ-function for the policy (33)–(34)
at i-th iteration, withHε

i partitioned as

Hε
i =

[

H [i ]
11 εH [i ]

12

⋆ εH [i ]
22

]

(38)

which is actually the performance index (11) for the system
(10) whenv = vi . In (32) of line 7,Qi(x,u,ε) is defined
by Qi(x,u,ε) = vT

i Rvi and can be considered an estimate
of the ε-approximateQ-function at i-th iteration (see the
definition of Q∗(x,u,ε)). In addition, by substituting (37)
intoQi(x,u,ε) = vT

i Rvi , it can be represented as the quadratic
form Qi(x,u,ε) = zT Πiz where

Πi :=

[

H [i−1]
12 R−1(H [i−1]

12 )T H [i−1]
12 R−1H [i−1]

22

⋆ H [i−1]
22 R−1H [i−1]

22

]

.

By Theorem 1 and Lemma 3, one can see the following
three key properties of Algorithm 2 which are essentially
employed to derive exact integralQ-learning in the next
subsection:

1. Algorithm 2 guarantees the stability and convergence to
(uε)∗ andQ∗(x,u,ε) by Theorem 1. In this case, the cor-
responding ultimate bound in Theorem 1 becomes‖x‖ ≤
2wMDi whereDi is defined as

Di :=
∥

∥

[

(H [i−1]
12 )T (H [i−1]

22 )T]
∥

∥/λm(Σ+Πi).

2. According to the recursion (31) in Lemma 3, when the
initial policy is stabilizing,Hε

i obtained by Algorithm 2
satisfies the recursion

FT
i Hε

i +Hε
i Fi =−Πi−Σ, (39)

whereFi := F−GεR−1GεHε
i−1. Furthermore, decompos-

ing (39) block-wisely, one has the following set of recur-
sive matrix equations:

ATH [i]
11+H [i]

11A− [H [i−1]
12 R−1(H [i]

12)
T +H [i]

12R
−1(H [i−1]

12 )T ]

=−H [i−1]
12 R−1(H [i−1]

12 )T −S, (40)

εATH [i]
12+H [i]

11B− [H [i−1]
12 R−1H [i]

22+H [i]
12R
−1H [i−1]

22 ]

=−H [i−1]
12 R−1H [i−1]

22 , (41)

ε(BTH [i]
12+H [i]

12B)− [H [i−1]
22 R−1H [i]

22+H [i]
22R
−1H [i−1]

22 ]

=−H [i−1]
22 R−1H [i−1]

22 −R. (42)

3. Algorithm 2 guarantees the monotonicity 0≤ Hε ≤
Hε

i+1≤ Hε
i , i.e.,

0≤Q∗I (xt ,ut ,ε)≤Q[i+1]
I (xt ,ut ,ε) ≤Q[i]

I (xt ,ut ,ε). (43)

This can be obtained by the monotonicity ofKleinman
(1968)’s method and its equivalence to Algorithm 1 (Vra-
bie et al., 2009). By (43), in the sense of minimizing

—-Algorithm 3: Integral Q-learning for Adaptive LQR ———-
1: Let u1 =−K1x be any stabilizing policy for (1).
2: i← 0 and setH [0]

11 = 0 andH [0]
12 = RKT

1 .
3: do {
4: i← i+1
5: Let wt be any nonzero exploration.
6: Apply the inputu= ui with explorationwt to (24).

7: Policy Evaluation: Find H [i]
11 andH [i]

12 satisfying

xT
t H [i]

11xt +2Φi(t,T) =
∫ t+T

t
c(x,ui) dτ +xT

t+TH [i]
11xt+T , (44)

whereΦi(t,T) =
∫ t+T

t
xTH [i]

12w dτ.

8: Policy Improvement:

Ki+1 = R−1(H [i]
12)

T , ui+1 =−Ki+1x, (45)

9: } until ‖H [i]
11−H [i−1]

11 ‖+‖H [i]
12−H [i−1]

12 ‖< δ .
——————————————————————————–

QI (x,u,ε), the policyu becomes better as the iteration
runs. Moreover, from (43), one has

0≤ Hε
11≤ H [i+1]

11 ≤ H [i ]
11 (46)

0≤ Hε
22≤ H [i+1]

22 ≤ H [i ]
22. (47)

for all i ∈ Z+. The former is obtained by lettingut = 0
in (43), and the latter by lettingxt = 0 in (43). From this,
we have the following essential lemma:

Lemma 4 If H [i]
22 is evaluated by Algorithm 2 with the

initial matrix H [0]
22 = Hε

22, then, H[i]22 = Hε
22 holds∀i ∈ N.

Proof. If H [0]
22 = Hε

22, then, 0≤Hε
22≤ ·· · ≤H [1]

22 ≤H [0]
22 =

Hε
22 holds by (47), soH [1]

22 = H [2]
22 = · · ·= Hε

22. ✷

Remark 2 While Algorithm 1 does not require the knowl-
edge ofA, it needs the known matrixB. On the contrary,
by virtue of the additional input dynamics (21), Algorithm
2 does not need the knowledge of both matricesA andB.

3.3 Integral Q-Learning: True Adaptive Optimal Control

Based on Algorithm 2 and its key properties, we now
derive the novel integralQ-learning algorithm for CT LTI
system (24) with the explorationwt . The key distinction of
the resultant algorithm from Algorithm 2 is that it does not
require the additional input dynamics (21) and guarantees
the convergence to the true LQR solutionsV∗(x) and u∗.
Note that by the stability of Algorithm 2,T ε

i (s) is always
stable, so that one can limitε → 0+ while maintaining the
stability of (34) (Kokotovic et al., 1986).

Lemma 5 Consider Algorithm 2 in the limitε→ 0+. Then,
asε → 0+, the followings hold∀i ∈ Z+:

1) T
ε

i (s)→ (H [i]
22)
−1, Q[i]

I (x,u,ε)→ xTH [i]
11x

2) T
ε

i (s)
[

− (H [i]
12)

Tx+Rw
]

→ ui +(H [i]
22)
−1Rw
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where ui =−(H
[i]
22)
−1(H [i]

12)
Tx.

Proof. The first part is obvious if one considers the limit
ε → 0+ of (33) and (38), and the second part is the trivial
application of the first part to (34).✷

Now, let Qi(x,u) be the approximateQ-function in the
limit, that is, Qi(x,u) := limε→0+ Qi(x,u,ε). Then, the ap-
plication of Lemma 5 to (32) in the limitε→ 0+ yields

• xT
t H [i]

11xt +2
∫ t+T

t

[

xTH [i]
12w+uTH [i]

22w
]

dτ

=
∫ t+T

t

[

c(x,u)+Qi(x,u)
]

dτ + xT
t+TH [i]

11xt+T , (48)

• u= ui +(H [i]
22)
−1Rw (49)

which can be further simplified by noting that limε→0+ Hε
22=

H22 = H∗22 = R holds by Lemma 2 and thus, that if one has

H [0]
22 = R, then,H [i]

22 = R holds for all i ∈ Z+ by Lemma 4.

Therefore, substitutingH [i]
22=R into (48)–(49) and rearrang-

ing the equations yields the true integralQ-learning shown
in Algorithm 3 for the system (24) with an explorationwt .

Now, for notational convenience in the analysis of Algo-
rithm 3, redefinePi , Ki , Ai , Mi , Ci , and Di with abuse of
notations as

Pi = H [i]
11, Ki := R−1(H [i−1]

12 )T , (50)

Ai := A−BKi, Mi := S+KT
i RKi , (51)

Ci :=
‖RKi ‖

λm(Mi)
, Di :=

∥

∥R
[

Ki Im
]∥

∥

λm(Σ+Πi)
. (52)

Here,Mi > 0 holds if S> 0, which further guaranteesΣ+
Πi > 0 by Schur complement of (53). Note that for Algo-
rithm 3, the matricesΠi andΣ+Πi are represented as

Πi =

[

KT
i RKi KT

i R
⋆ R

]

, Σ+Πi =

[

Mi KT
i R

⋆ 2R

]

. (53)

Here, consideringH∗11 = (K∗)TRK∗ and H∗12 = (K∗)TR,
one can see from (6) and (53) that limKi→K∗ Πi = H∗,
i.e., Qi(x,u) → Q∗(x,u) as Ki → K∗. This implies under
Ki → K∗, Πi is an approximate ofH∗ at i-th iteration.
By the application of Theorem 1 to Algorithm 3 with
S> 0, the stability and convergenceKi → K∗ andPi → P∗

are all guaranteed with the corresponding ultimate bound
‖x‖ ≤ 2wMDi . Therefore,Qi(x,u) obtained by Algorithm
3 surely converges toQ∗(x,u). Furthermore, the following
lemma allows to investigate the further properties regarding
Algorithm 3.

Lemma 6 Under the notations(50)–(52), assume Ai is sta-
ble. Then, one-step recursion(44)–(45) of Algorithm 3 is

equivalent to solving the following matrix iterative formula:

H [i]
11B= H [i]

12, (54)

AT
i H [i]

11+H [i]
11Ai =−Mi , (55)

Proof. Note that Algorithm 2 is equivalent to solving the
iterative formula (40)–(42), and that Algorithm 3 is the
limiting caseε → 0 of Algorithm 2 with the substitution

of H [i]
22 = R for all i ∈ Z+. AssumingAi is Hurwitz, tak-

ing the limit ε → 0+ of (41) and (42), and substituting

H [i]
22 = H [i−1]

22 = R into the results yield (54) andR= R, re-
spectively. Therefore, substituting (54) into (40) and con-
sidering the definitions ofKi and Ai , one has (55), which
completes the proof.✷

With the notations (50)–(52) and Lemma 6, the same
procedure of the proof of Theorem 1 also proves the stability
and convergencewith eachi-th ultimate bound‖x‖≤2wMCi .
Furthermore, sincePi > 0 is guaranteed byS> 0, B can be

obtained by (54) asB= (H [i]
11)
−1H [i]

12. The following theorem
states all the results from the above discussions with the
notations (50)–(52).

Theorem 2 Suppose S> 0 and (Pi ,Ki) defined by(50) is
updated by Algorithm 3. Then, the followings hold under an
initial stabilizing policy u1:

• Ai is stable and the closed-loop systemẋ = Aix+Bw is
UUB for all i ∈N, with each ultimate bound‖x‖ ≤ 2wM ·
min{Ci ,Di} for i 6= 1.
• As i goes to∞, (Pi,Ki) and Qi(x,u) converge to(P∗,K∗)

and Q∗(x,u), respectively.

• B can be expressed as B= (H [i]
11)
−1H [i]

12 for all i ∈ N.

Remark 3 Algorithm 3 does not containA and B explic-
itly, which implies that the iteration can be executed with-
out the knowledge ofA andB. Instead, the explorationwt
is needed to learn the parameters of the controller. This ex-
ploration corresponds to the probing noise in DTQ-learning
(Al-Tamimi et al., 2007; Bradtke & Ydstie, 1994; Lewis &
Vamvoudakis, 2010) as well as the exploration in a finite
MDP (Powell, 2007; Si et al., 2004; Sutton & Barto, 1998).

Remark 4 According to Theorem 2,B can be obtained by

Algorithm 3 asB= (H [i]
11)
−1H [i]

12 after 1st-iteration. AfterB is
obtained, other algorithms such as explorized PI (Algorithm
1) and the PI ofVrabie et al. (2009), can be also used to
find the solutionsP∗ andK∗ online.

3.4 Online Implementation

To implement Algorithm 1 and 3, the iterative formula
(28) and (44) should be modified by using the properties
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among Kronecker product and the operators vec(·), and
vec+(·) already listed in Section 2.1. By using those prop-
erties, we havexTPix= xTΓvec+(Pi) and

∫ t+T

t
xTH [i]

12w dτ =

[

∫ t+T

t
(w⊗ x)T dτ

]

vec(H [i]
12)

∫ t+T

t
xTPiBw dτ =

[

∫ t+T

t
(Bw⊗ x)T Γ dτ

]

vec+(Pi)

Now, using the above expressions, both (28) and (44) can
be rewritten for anyk∈M by a general compact form

αT
k θi = yk (56)

where yk :=
∫ t+kT
t+(k−1)T c(x,ui)dτ. Here, θi and αk are de-

fined asθi := vec+(Pi) andα(t) := ΓT
[

xt+(k−1)T − xt+kT +
∫ t+kT
t+(k−1)T Bw⊗ xdτ

]

for (28) of Algorithm 1, and

θi :=
[

(vec+(H [i]
11))

T , 2vecT(H [i]
12)

]T
(57)

αk :=

[

(xt+(k−1)T − xt+kT)
TΓ,

∫ t+kT

t+(k−1)T
(w⊗ x)T dτ

]T

.(58)

for (44) of Algorithm 3. Here, we should find at each it-
eration the uniqueNmin parametersθi ∈ R

Nmin satisfying
(56). Here,Nmin = qn for (28) in Algorithm 1 andNmin =
qn+nm for (44) in Algorithm 3. However, there is only 1-
dimensional equation (56), so that the uniqueness of the so-
lution is not guaranteed. This kind of difficulty can be solved
by least squares (LS) method (Al-Tamimi et al., 2007; Lee
et al., 2009; Vrabie et al., 2009). In this paper, we exactly
evaluateθi at each iteration by solving the LS equation:

θi = (A A
T)−1

AY , (59)

where A :=
[

α1 · · · αN
]

and Y :=
[

y1 · · · yN
]T

for
N≥Nmin. For the LS (59) uniquely solvable,A should have
the full-rankNmin andN ≥ Nmin is obviously necessary for
rank(A ) = Nmin. Note thatA A T andAY are expressed
asA A T = ∑N−1

l=0 αk+l αT
k+l andAY = ∑N−1

l=0 αk+l yk+l , re-
spectively. By Proposition 3,αk should be persistently excit-
ing at least with orderNmin for the existence of(A A T)−1

which is equivalent to rank(A ) = Nmin.

Remark 5 if αk is persistently exciting with orderNmin
andA A T andAY are perturbed toA A T +∆A A T and
AY +∆AY by unexpected noises or uncertainties, result-
ing in the perturbationθi +∆θi by (59), then, by (27) and
the argument of linear algebra, the error∆θi is bounded as

∆θi from ∆A A
T :

‖∆θi‖

‖θi +∆θi‖
≤ ‖∆A A

T‖/β1, (60)

∆θi from ∆AY :
‖∆θi‖

‖θi‖
≤

β2‖∆AY ‖

β1‖∑N−1
l=0 αk+l yk+l‖

, (61)

Here, note that the largerβ1, the smaller bounds (60)–(61)
the relative errors have. In (61), the PE ofyk of orderNα ≥N
is desirable to prevent‖∑N−1

l=0 αk+l yk+l‖ from being zero.

Remark 6 The condition rank(A ) = qn+nmof Algorithm
3 is less conservative than that of the existing DTQ-learning
(Lewis & Vrabie, 2009) whereN ≥ qn+m is necessary for
updating the DTQ-function.

In the sequel, we focus on Algorithm 3 and give a condi-
tion for PE ofαk. This can be easily extended to Algorithm
1. Suppose the explorationwt satisfies Assumption 2, and
hence,wt ≡ wk−1 holds over the interval[t +(k−1)T, t +
kT). Then, considering (25) and the notationsxk andwk in
Section 2.4 withτ = t, we have

∫ t+kT

t+(k−1)T
w⊗ x dτ = wk−1⊗E[i]

d xk−1, (62)

∆xk = A
[i]
d ∆xk−1+

[

Ξ[i] B
[i]
d

]

∆ϖk−1, (63)

where the superscript[i] implies that the matrix is formu-
lated with the control gainK = Ki . For the further discus-
sion, letξk+l be defined asξk+l+1 := wk+l ⊗xk+l . Then,αk

is expressed asαk = E χk whereE := diag{−ΓT , I ⊗E[i]
d }

and χk := [∆xT
k ξ T

k ]T . Now, notingξk+1 = (I ⊗A[i]
d )(ξk +

∆wk−1⊗ xk−1) + (I ⊗B[i]
d )(wk⊗wk−1) and combining this

with (63), the following DT dynamic equation is derived.

χk+1 = F χk+G φk (64)

where







F :=

[

A
[i]
d 0

0 I⊗A[i]
d

]

, G :=

[

[Ξ[i] B[i]
d ] 0 0

0 I⊗A[i]
d I⊗B[i]

d

]

φk := [∆ϖT
k−1, (∆wk−1⊗ xk−1)

T , (wk⊗wk−1)
T ]T

.

Proposition 4 Consider the LS solution(59)with (57)–(58)
for Algorithm 3. Suppose N satisfies N≥ n(n+m) and (64)
is controllable. Ifφk is persistently exciting with order n(n+
m), then,αk is persistently exciting with order qn+nm.

Proof. First, note that if (64) is controllable andφk
is persistently exciting with ordern(n+ m) = dim(χk),
then, [χ1 · · · χN] with N ≥ dim(χ) always has the
full rank n(n + m) (Willems et al., 2005, Corollary
2). Since rank(E ) = qn + mn, we have rank(A ) =
rank(E [χ1 · · · χN]) = rank(E ) = qn + mn, which implies
the PE ofαk. ✷

Proposition 4 states thatφk should be at least persistently
exciting of order dim(χ) to guarantee the uniqueness ofθi
in (59). For this persistently excitingφk, a random explo-
ration wk sampled from a probability distribution can be a
rational choice since a random input is persistently exciting
of any order(Willems et al., 2005) so that it could increase
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Fig. 1. (a)(d)(e): simulation results for the integralQ-learning; (b):simulation results for the explorized PI with B estimated byQ-learning;
(c)(f):simulation results for the PI (Vrabieet al., 2009) withB estimated byQ-learning.

the order of persistent excitation ofφk.
By virtue of the differential equationṡV(t) = c(x,ui) and

Ẇ(t) = (Xw⊗ x)T for some matrixX, the integral terms
in y(t) and α(t) can be simplified as

∫ t+T
t c(x,ui)dτ =

V(t +T)−V(t) and
∫ t+T
t (Xw⊗x)T dτ =W(t +T)−W(t),

respectively.

4 Simulation Results

In this section, a numerical simulation for the following
online load frequency control of a power system (Vrabieet
al., 2009) is carried out to verify the effectiveness of the
proposed algorithm.

A=









−0.0665 11.5 0 0
0 −2.5 2.5 0
−9.5 0 −13.736−13.736
0.6 0 0 0









, B=









0
0

13.736
0









.

In this simulation, the parameters of the value function (2)
are given byQ= I , R= 1 which yields the following LQR

solution:

P∗ = H∗11=









0.4600 0.6911 0.0519 0.4642
0.6911 1.8668 0.2002 0.5800
0.0519 0.2002 0.0533 0.0302
0.4642 0.5800 0.0302 2.2106









,

K∗ = R−1(H∗12)
T

=
[

0.7135 2.7499 0.7323 0.4142
]

.

and we assume zero initial condition which is not accept-
able in the absence of explorationwt . Here,wt is chosen
aswt = wk for t ∈ [kT,(k+1)T) wherewk is sampled from
a uniform distribution[−wM, wM] with wM determined by
wM = xM/2max{Ci ,Di} with xM = 10−3 to guarantee the
UUB ‖x‖ ≤ xM by Theorem 2. Here,wM cannot be deter-
mined before the first iteration since the system(A,B) is
unknown. So, at the first iterationwM = 10−3 is used for the
exploration. TheQ-learning parameters are set toT = 0.05
[s] andN = Nmin = 14 so the LS solution (59) is obtained
everyNT = 14×0.05= 0.7 [s].

The simulation results for integralQ-learning are de-
scribed in Figs. 1(a),(d),(e). As can be seen from Figs.
1(a),(d),Pi and Ki are updated simultaneously and shown
to converge. Fig. 1(e) shows the state trajectory explored
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by wt wherewt = 10−3 yields a rather heavy oscillations
before the first iteraion, but after 0.7 [s], the UUB‖x‖ ≤
2wM min{Ci ,Di} is used to determinewM, resulting in the
very small bounded oscillations. After the parameters con-
verge (6.3 [s]), the explorationwt is not applied to the sys-
tem anymore, and the states become stationary and converge
to zero.

Next, the explorized PI (Algorithm 1) and the PI ofVra-
bie et al. (2009) are simulated afterB is obtained at the first
iteration, which is illustrated in Remark 4. SinceN = Nmin
(Nmin= 10) is used for both PI algorithm, they can find LQR
solution in a reduced time. Here, PI ofVrabieet al. (2009)
is inherently unable to solve zero initial condition problem
alone, but with the excitation made by theQ-learning agent,
PI ofVrabieet al.(2009) can find the LQR solution as shown
in Fig 1(c). However, as the state becomes stationary (Fig.
1(f)), some deviation from the solution is introduced after
8.2 [s] since the poor excitation causes the large numerical
errors. On the other hand, as shown in Fig. 1(b), this kind of
problem never happen when the explorationwt is injected
to the system by explorized PI agent.

5 Conclusions

This paper proposed the explorized PI and combined with
the introducedε-integralQ-function, presented an integral
Q-learning scheme which solves CT LQR problem in real
time, without knowledge about the system dynamicsA and
B. By virtue of the exploration & singular input perturba-
tion, the assumption of perfectly knownB was relaxed, and
the stability and convergence was mathematically proven,
provided that the initial policy is stabilizing. For the imple-
mentation via LS, the PE closely related with explorations
was investigated and a sufficient condition for guarantee-
ing the solvability of LS was given. Though there are still
a number of remaining works concerning explorations, PE,
robustness, and implementations, these works can be pro-
vided as a basis for developingQ-learning & adaptive op-
timal control schemes in CT framework, with stability and
convergence considerations.
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