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Abstract

This paper proposes an integ@learning for continuous-time (CT) linear time-invarighill) systems, which solves a linear quadratic
regulation (LQR) problem in real time for a given system aneale function, without knowledge about the system dynarAi@and B.
Here,Q-learning is referred to as a family of reinforcement leagninethods which find the optimal policy by interaction withuncertain
environment. In the evolution of the algorithm, we first depean explorized policy iteration (Pl) method which is atwedeal with known
exploration signals. Then, the integ@learning algorithm for CT LTI systems is derived based ds Bl and the variants @@-functions
derived from the singular perturbation of the control inpLhe proposed-learning scheme evaluates the current value function laad t
improved control policy at the same time, and are provenetafd convergent to the LQ optimal solution, provided thatinitial policy

is stabilizing. For the proposed algorithms, practicalirmimplementation methods are investigated in terms dfigency of excitation
(PE) and explorations. Finally, simulation results arevjated for the better comparison and the verification of thegumance.
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1 Introduction (DT) dynamic systems in both control and machine learn-
ing communities Balakrishnan, Ding, & Lewis2008 Si

In engineering terminology, reinforcement learning (RL) €t al. 2004 Lewis & Vrabie, 2009 Wang, Zhang, & Liy
is a class of biologically-inspired computational methods 2009- These RL methods, also known as approximate dy-
to improve the agent’s action in a given uncertain environ- N@Mic programming or adaptive critics, overcome ‘the curse
ment Powell 2007 Si, Barto, Powell, & Wunsch2004 of d|men_5|on§1I|ty pf tra_dltlonal dynamic programming by
Sutton & Bartg 1999. It adjusts the agent's current ac- forward-_tlme iteration Sietal, _2004), ar]d are cor_15|dered
tion by interacting with the environment: first it observes 2asadaptive optimal controfLewis & Vrabig 2009 Siet al,
the rewards from the environment, and then, modifies the 2004 or model-predictive control schemBgrtsekas2005
action based on the observed information to maximize its L€€ & Leg 2004 Zhang, Huang, & Lewis2009 in control
current and future rewards. This procedure is exactly the €ngineering perspectives. By employing such RL methods,
same as and actually comes from the learning mechanism¢£?N€ can obtain the optimal policy in an uncertain noisy en-
of mammals—they interact with the environment and mod- Vironment with less computational burden.
ifies their own actions accordingly to improve their recdive ~ Among the RL methodsQ-learning, first proposed by
rewards, leading to better survival chances. These RL algo-'Vatkins (1989 in a finite MDP framework, has been rec-
rithms are investigated at first for a finite Markov decision ©9nized as one of the most promising and widely used RL
process (MDP)Kaelbling & Moore 1996 Sutton & Bartg methods in various fields of engineeririRpfvell 2007, Sut-

1998, and later, for continuous-time (CT) and discrete-time ton & Barto, 1998 Wang, Zhang, & Liy 2009. For Q-
learning in a finite MDP, the convergence to the optimal pol-

* This paper was not presented at any IFAC. icy and its corresponding _action ve}lge function was given by
* Corresponding author. Tel.: +82 2 2123 2773; fax: +82 2 362 Watkins & Dayan(1992 with a sufficient number of explo-

4539. rations. Inspired by-learning for a finite MDPQ-learning
Email addressesi youngl ee@onsei . ac. kr (Jae Young SChem_eS for uncertain DT Fiynamlc §ystems, alsp known

Lee),j bpar k@onsei . ac. kr (Jin Bae Park ), as action-dependent heuristic dynamic programming (AD-

yhchoi @yonggi . ac. kr (Yoon Ho Choi). HDP), are investigated by many researcheXsTamimi,
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Abu-Kalaf, & Lewis, 2007 Balakrishnaret al., 2008 Bert-
sekas & Tsitsiklis1996 Bradtke & Ydstie 1994 Landelius
1997 Lewis & Vrabie 2009 Lewis & Vamvoudakis201Q
Prokhorov & Wunsch1997 Si et al,, 2004 Wang, Zhang,
& Liu, 2009 Webos 1992. However, many of the early
Q-learning methods for DT dynamic systems did not guar-
antee the convergence to the optimal solutiBnokhorov
& Wunsch 1997 Si et al, 2004 Wanget al., 2009 We-
bos 1992. To solve this problem, researches on develop-
ing convergence-guarante@dlearning are carried out for
DT linear quadratic regulation (LQR) problenBradtke &
Ydstie 1994 Landelius 1997, DT zero-sum gamesA(-
Tamimiet al,, 2007, and DT output feedback optimal con-
trol (Lewis & Vamvoudakis2010. In their works, the per-
sistence of excitation (PE) condition is needed for paramet
convergence and online implementation.

At each decision stepQ-learning for a finite MDP ei-

Inspired by the work of.ewis & Vrabie (2009, our pre-
vious work proposed an RL algorithm to solve a CT LQR
problem without knowing the system dynamiésand B
(Lee, Park, & Chqgi2009. However, the method only pro-
vides an approximate solution to the LQR problem, and
the internal signal becomes impulsive as the target approxi
mate solution approaches to the exact one. Recévitpita
& Meyn (2009 proposed a CTQ-learning algorithm with
the connection to Pontryagin’s principle, but the stapilit
and convergence properties of the method have not yet been
proven as well. In summary, to the best authors’ knowledge,
all the RL methods for CT dynamic systems either requires
the perfect knowledge of the input coupling terms, or do not
guarantee the stability and convergence.

Motivated by the work olrabie et al. (2009, this pa-
per presents the integr@-learning scheme which solves a
given CT LQR problem without knowing the system dynam-

ther randomly explores the state-action space to update thdécs A andB. By simultaneously evaluating the current value

action value for the unexplored state-action pair, or explo
the action values to modify and improve the current pol-
icy. Note that without exploration, only some limited areas

function and the improved control policy, the proposgd
learning agent solves a CT LQR problem with guaranteed
stability and convergence. More specifically,

of action values are estimated and hence, the final updated

policy could not be optimal in the whole state-action space.
(Sutton & BartQ 1998. For DT LTI systems, similar results
can be found from the works dkl-Tamimi et al. (2007);
Bradtke & Ydstie(1994); Lewis & Vamvoudakig2010. In

their works, exploration, so-called probing noise, is rsece
sary to prevent the PE condition from being lost. Without
PE, the learning agent cannot update the next policy any-
more. Moreover, iQ-learning with batch least squares (LS)
(Al-Tamimi et al, 2007 Lewis & Vamvoudakis2010), the
poor excitation introduces the considerably large nuraéric
errors at the policy evaluation step since it contains an in-
verse operation of a matrix where the condition number may
become very large due to the poor excitation. These corre-
spond to the&Q-learning for a finite MDP framework where
exploration noise should be suitably injected to improwe th
performance of the agent.

On the other hand, the eary-learning schemes for CT
dynamic systems were proposed independentlBaiydll|
(1999 andDoya (2000. Although these early methods can
be applied to the general uncertain autonomous nonlinear
systems, they do not guarantee the stability and conveegenc
to the optimal solution. From the different perspectiésy-
ray, Cox, Lendaris, & Saefr002 proposed an RL method

e In Section 2 the LQR problem and it®-function are first
addressed and the variants of tigunction are presented
via singular input perturbation. The exploration and PE
with this input perturbation are also discussed.

In Section 3.1-3 explorized Pl is proposed and based
on the results, the main integr@tlearning is presented.
Here, explorized PI can deal with explorations, which is
not for the conventional PI, and the integ@learning
essentially requires this exploration to obtain the impibv
control policy without knowing the matri.

In Section 3.4 The exploration and PE will be further
investigated with the connection to least-squares online
implementation of the proposed algorithms.

In Section 4, to verify the effectiveness of the proposed
algorithms, simulation results are provided with the com-
parison to the Pl o¥/rabieet al. (2009.

2 Preliminaries
2.1 Notations & Mathematical Background

In this paper, we denot&., the set of nonnegative in-

for CT LQR problems, which needs the measurements of tegers andVI™" the set of allmx n constant matrices.

the state derivatives for online implementation. Inspiogd
the works ofMurray, et al. (2002, Vrabie, Pastravanu, Abu-
Kalaf, & Lewis (2009 proposed a derivative-free online RL
method for CT LQR problems. This class of RL schemes
is also called policy iteration (PI), and is proven to be sta-
ble and convergent to the optimal solution, provided that th
initial policy is stabilizing Murray, et al, 2002 Vrabie et

al., 2009. However, they requires the exact knowledge of

Also, for a symmetric matrixX € M™", Am(X) andAm(X)

denote the maximum and minimum eigenvaluesXofre-

spectively. Throughout the paper, the spectral norm and Eu-

clidean norm, defined agA| := Am(ATA)Y2 and ||x|| :=
(x"x)Y/2, respectively, will be used for a matrix € M™"
and a real vectox € R". Here,AT denotes the transpose of

A. For a sequencéay}y o with a € R", Aa, represent the

differencefay = ayx. 1 — ax, and for a continuously differen-

the input coupling terms in the system dynamics to update tiable functionalf (x,y) with x € R" andy € R™, Oxf(x,y)

the control policy. This restriction also exists in simiRL
methods for CT nonlinear system®dng & Farrell 2009

denotes the gradient df(x,y) with respect to.
For compact representations, we will use @xfor X €

Lewis & Vrabie 2009 and the synchronous Pl recently de- M™" as a vectorization map from a matrix into am-

veloped byVamvoudakis & Lewig2010.

dimensional column vector. This ve€) stacks the columns



of X on the top of one another. Also, we let V€¢) be

defined as an operator which maps a symmetric matrix

Y € M™" into a vector with dimension, (:=n(n+1)/2)

by stacking the columns corresponding to the diagonal and

upper triangular parts of on the top of another where
the off-diagonal terms o¥ are doubled. Here, we define
gn :=n(n+1)/2 for anyn € N. Also, we letA® B be a
Kronecker product oA and B, and denote the Kronecker
product ofA itself, i.e., A® A by A. The key properties for
these three operations are

1.
2.

vedAXB) = (BT ® A)vedX);

for everyx, y € R", there exists a permutation matrix
U e MMM gych thatx®@y) = U (y® X);

for everyY = YT € M™", there is a matriX’ € M™ x
with rank(I") = gn such that ve@Y) =T vec" (Y) (Murray,

et al, 2002.

3.

Here, the dimensions of the matricAsB, andX, and the
column vectorsx andy are assumed to be all compatible.
Note thatx" Ay= (y@x)T veqA) = vedA)T (y® x) holds as

a special case of Property 1.

2.2 Optimality Principle & Q-Function for LQR

In this paper, we consider the infinite horizon LQR prob-
lem for the following CT LTI system

% = A% + Bu, x(0) = Xo (1)
with the value function
Vux,t) = [ cxudr @
t

for a policy u, wherex € R" and u; € R™ are the state
and input vectorsA € M"™" andB € M"*™M are the system
and input coupling matrices of the system (d(x, u) is the
quadratic cost function defined @&, u) := x" Sx+u' Rufor
someS=C'C >0 (Cc MP*") andR > 0. Here \, u(t) and
simply u will be used interchangeably for the input of the
system (1), and the following will be assumed throughout
the paperl(ewis & Syrmos 1995:

Assumption 1 The triple (A,B,C) is at least stabilizable
and detectable.

For a given policyu = —Kx, defineAx as the closed-loop
matrixAx ;= A—BK. If u= —Kxis stabilizing for the system
(1), then, the value function (2) is finit&lginman 1968,
and without loss of generalityj, can be represented as the
time-invariant formulaV,(x) = X' Px. Now, let V*(x)
xTP*xandu* = —K*x be the optimal value function and con-
trol, that is,V*(x) := minyVy(x) and u* := argmin,Vy(x).
Then, by Bellman’s optimality principl&/* (x) satisfies the
optimality equationl(ewis & Syrmos 1995 Lewis & Vra-

bie, 2009:

min
u(T),
TE[tt+T]

t+T
V(%) | etxudrvien|. @

which is the basis of the CT PI &frabieet al. (2009 and
also the connection betwe&fi(x ) and the CTQ-function
Q*(x,u). Dividing both sides of (3) byl and limitingT —
0" yields the infinitesimal version thereof:

min (c(x, u) +V*(x)) =0. (4)

Mehta & Meyn(2009 mentioned that the CQ-function
Q*(x,u) is the function of two variables within the minimum
on the left side of (4) which is closely related to Hamiltamia
A (x,u,p) = c(x,u) + p' (Ax+ Bu). Therefore,Q*(x,u) is
given byQ*(x,u) = ¢(x,u) +V*(x), and (4) can be rewritten
in terms of theQ-function as

®)

muinQ* (x,u) =0,

so thatu* can be obtained by minimizin@*(x,u). Here, by
V*(x) = (OxV* (X)) T (Ax+ Bu), Q*(x,u) can be represented
as the following quadratic formula:

Q (xu) = [xT uT] [Hfl Hfz] [X]

6

* H3,| U (©)
whereH;j, := ATP* + P*A+ S Hj, = P*B, andH, =R
By solving 0,Q*(x,u) = 0, one obtains the optimal solution
u* minimizing (6) as

U = —K*x = —(H3p) L(Hi) T )
which is a key equation of the propos@dearning. From (7)
and the definitions offi;, andH3,, one hak* = R"1BTP*.
Furthermore, substituting the minimum solution (7) intd (5
and rearranging the equation according to the definitions of
Hjy, Hi,, andH,,, one obtains the well-known algebraic
Riccati equation (ARE):

ATP* 4+ P*A—P'BR 'B"P* +S=0, (8)
which has the unique solutid? by Assumption 1l(ewis &
Syrmos 1995. These equations (6)—(8) actually provide the
relations betwee@-functionQ*(x,u) and the optimal solu-
tion (V*,u*). Note that there is no direct connection between
H;; of Q*(x,u) andu* (see (7)), and only (8) provides the de-
pendent relatiorH;; = Hi,(H3,) “1(H)T = (K*)TR(K*).
Thatis, though it contains the information abo&tP*), Hy;
is an unnecessary redundant term when the learning process
of u* is considered. This motivates the introductioneaf
integral Q-function in the next section which contains the
information aboutP*,H;,, H;,), instead of(H;;, Hys, Hs,).



2.3 e-Integral Q-functions

To introducee-integral Q-function, which is closely re-
lated with theQ-function Q*(x,u), consider the additional
input dynamics

eu=v, u(0)=ug 9
perturbed by, wheree > 0 is a small constant, ang € R™

is the virtual policy which drives. Then, the input dynamics
(9) has the following property:

Lemma 1 Suppose v —R K] x— R Ku+w is applied
to (9) with some K, Ky, and w. Then, the additional dy-
namics(9) can be rewritten as & ¢ ()| — K{x+Rw],
with the Laplace variable s wher&¢ (s) is the low pass

filter defined byZ¢ (s) := (esR+Kz) .

This lemma will be widely used in the paper, and the proof

is trivial (just take the Laplace transform of (9) wittgiven

in Lemma 1). In the sequel, consider the LQR problem for

the dynamics (1) and (9) with the compact representation:
z=Fz+G, z(0) =2 (10)

and the quadratic value function, denoted @Y(x U, €),

for the system (10)

QY (%, W, &) := /twc(x,u)JrvTRvdr, (11)

whereF := [48],G*:=[0 In/e]" z:=[x" u"]T, and
z0:=[x{ ul]T. Here,c(x,u) can be rewritten by the sim-
ple quadratic fornt(x, u) = z' Zzwith X := diag{S R}. This
LQR problem is theoretically involved with the singular
perturbation theory and cheap optimal conti§bKotovic,
Khalil, & J. O'Reilly, 1986 and since Assumption 1 trivially
implies the stabilizability and detectabillity ¢F, G¢,5/?),

eATHE, + HEB— HERHE, =0,
e(BTHf,+ (H1p)"B) —HELR 'H3, +R=0.

(16)
(17)

Here, we conside®;| (x, u, €) as thes-integralQ-function for
the LQR problem (1)-(2). Now, define theeapproximate
Q-functionQ*(x,u, £) asQ*(x,u, &) := (v*)TRv* with abuse
of notation. Then, substituting (13) and (15) i@5(x, u, £)
yields the following formula
" _ o1 7 [ATHE +HHEA S HERTHS,) X
Q (X7 u, 8) - [X u ] * H2£2R—1H£: u
(18)

which correspondsto (6) 6*(x, u). Furthermore, define the

e-approximate optimal policju?)* as the policyu generated

by (9) withv=v*. Then, by Lemma 1, one has
()" =~ 5% (9 [(HE) ],

(19)

the approximate version of (7). In fa€d; (x,u, €) is related
with Vy(x) andQ*(x,u, &) underu = (uf)*:

Proposition 1 Consider thes-integral Q-function(11) with
the systen{10). Then, Q(x,u,&) > 0 given by(12) satis-
fies H; > 0, H5, > 0, and under u= (u®)* with the initial
condition ut) = u,

QT()Q,ut,e):/th*(xT,ur,e) dt +Wu(X)- (20)

Proof. Q(x,0,&) =x"HE,x>0andQ (0,u,&) =u"HEu >
0 provesH;, > 0 andH5, > 0O, respectively. (20) can be
obtained by substitutin®*(z €) = (v)TRv* into (11). O

Now, consider the limit case— 0 and denotélj (j,k=
1,2, j <K) by Hji :=lim;_,p+ ka. Then, we state the fol-

by the arguments in Section 2.2 (or by the singular perturba- lowing lemma and proposition concerning the convergence

tion theory), there exists the unique solutiQp(x, u, €) and
v* which are given as follows:

HE eHE| [x
= T T 11 <M12 12
Qifeue) = )T M aa)
Vi(t) = —RH(HE) TX(t) — RTHZU(). (13)
HE, eHE . .
whereH? := [ *11 EH?] > 0 is the solution of the ARE:
22
HE R—l(HS )T HE R—1H£
FTHE +HEF +> = | 12 12 12 22 14
L i iS4 D

which can be block-wisely decomposed as

ATHS; + HEA— HER Y(HE,) T +S=0, (15)

of Q*(x,u,€), Qf(x,u,€), and (ué)*.

Lemma 2 Consider thes-integral function @ (x, u, €) in the
limit casee — 0. Then, it satisfies H = P*, Hio = H;,,
and Hy = H3,.

Proof. This can be easily proven by taking the limits+» O
of all those equations (15)—(17) and rearranging the r@sult
For a complete proof, see Lemma llieeet al.(2009. O

Proposition 2 Consider the Q-functions'@x, u), Q*(x,u, £),
and @ (x,u, &) defined above with the systét®). Then, for
all (x,u) € R™Mwe have in the limig — 0" the followings:

e Q"(x,u,8) = Q*(x,u),

o Qf(x,u,€) = V*(x), (uf)* —u".



Proof. The proofcan be done by taking the limits+ 0™ of
(19)—(20) and applying Lemma 2 to the resulting equations.
Here, note that lirp o+ 914852(5) =H,. O

Remark 1 Qj(x,u, €) is actually derived based on the spirit
of Q-functions presented tBradtke & Ydstie(1994); Lewis

& Vrabie (2009; Sutton & Barto(1998. Minimized with
respect to the action or contnaltheQ-functions in the refer-
ences actually become the optimal value function. Sinyilarl
Q' (X,u,&) becomed/*(x) when optimized with respect to
€ > 0 in the input dynamics (9). Note that as— 0*, the
integral term in (20) vanishes arf@ (x,u, &) — V*(x), the
minimizing solution in terms o€ > 0.

2.4 Explorations

For the discussion of explorations, assume that any
given non-zero measurable signal which is exactly known
a priori and bounded byw > 0, i.e, SUR~g|[W| < Ww.
Throughout the paper, this; will be called an exploration
signal (or simply exploration) which plays a key role in both
consistently exciting the sign& and relaxing the assump-
tion of perfectly knownB, as will be presented in Section
3. From now on, suppose both a virtual poligyand an
explorationw; are applied at the same time to the input dy-
namics. That is, instead of (9), consider the following inpu
dynamics, explored bw:

eu=v+w, u(0)=ug (22)
Then, similarly to (10), the dynamics (1) and (21) can be
compactly rewritten as

z=Fz+G¥v+w], z(0) =2z. (22)

Note that (21) can be representedias 7¢ (s) [—K{x+Rw
by Lemma 1 whew = —R~1KIx— R~1Kyu is applied with
someK; andKs. Applying this fact into (22), one obtains
x=Ax+B- { F (s)[-K{ x+Rw }. (23)
If vis a stabilizing policy for the system (10), (23) can be
further simplified by lettingk, = R and limiting € — O™
(Kokotovic et al., 1986 as shown below:
X = Ax+ B[u+Ww], x(0) = Xo, (24)
whereu is given byu = —Kx with the gain matrixk =

R1K[. For the investigation aft, the following assumption
is needed:

Assumption 2 The exploration w is piecewise constant
where the transitions are allowed only at the discrete time
instants(t, t+ T, t+2T, t+3T, ---).

This assumption will be used only in Section 3.4 where
some conditions omy of (24) are presented for the on-
line implementation of the proposed algorithms. Applying

u= —Kxandw satisfying Assumption 2 to (24) and defin-
iNg X := Xr k1 andwy := w7 for somer >0 andT >

0, one can reformulate (24) ag,1 = AgXx + Bgwy where
Aq:= T, By := E4B, andEq := [, €' dt. Furthermore,
expandin@y. 1 = Xk+1 ® Xk+1 by using the Kronecker prod-
uct properties shown in Section 2.1, one has the following
DT equivalent dynamics in terms &g:

X1 = AgX+ [= By ok (25)

where=:=[I U] (A®By) andmy := [(x® W)" WHT €
R™" U is the permutation matrix already shown in Section

2.1. Here, (25) plays a central role in the analysis of explo-
ration in terms of the notion of PE precisely defined below:

Definition 1 (Willems et al., 2005 A bounded DT signal
sc € R" (k € Z,) is persistently exciting of order E N
if there are no @, a, ..., 3 € R', not all zero, such that
Shialsq1=0forallkeZ,.

Proposition 3 Assume a bounded DT signalsR" (k €
7..) is persistently exciting of order € N. Then, there exist
B1, B2 > 0such that for all ke Z,

L-1
Bil < %SkJrISIH <Bal. (26)
|=
Proof. Sinces, € R is bounded, s0 i§| ) sciSk,;, the
existence off3, > 0. Considering the quadratic formula
X' (3125 Scri S )X = 310 (X" scp1)? for any nonzero vector
X, by PE ofs, and Xy < x* 4y, one has

L-1 2
0# < ZOXTS"L')
|=
Thereforegf—z0 Skt §I+| is positive definite and the existence
of B; > 0 is proven. O

L-1

<L Ts1)2. 27
< I;(X Sctl) (27)

3 Main Results

In this section, we first present the explorized policy it-
eration algorithm, and then, based on the results, develop
the novel integra-learning scheme. The practical imple-
mentations of the algorithms based on least squares are also
discussed in relation to the exploratian

3.1 Explorized Policy Iteration

The proposed explorized Pl is aimed at finding the opti-
mal solutionsvV*(x) andu* online for the system (23) with
the known exploratioows and uncertain/unknown system
matrix A. The distinguishing feature of this algorithm from
the Pl proposed by/rabie et al. (2009 lies in the explo-
rationw. By virtue of w, the agent can autonomously ex-
plore the state-space to efficiently update the policy ad it



—- Algorithm 1: Explorized Policy Iteraion ——M8M8¥
Let Py =0 andu; = —K3x be any stabilizing policy.

i+~ 0

do {

i—i+1

Letw; be any nonzero exploration.

Apply the inputu = u; with explorationw; to (24).

Policy Evaluation: Find V;(x) = x" B x satisfying

t+T
Vi (%) + 20 (t,T) = /t c(%,U) A7 +Vi(x) (28)

T
where®;(t, T) :/ x" PBw dr. (29)
t

(o]

: Policy Improvement:

Kisr =R 'BTR, uiya(t) = —Kij1x (30)

9: }until [|R—R_41]| <.

value function. To deal with the exploration, an additional
term, denoted byp;(t,T) , should be incorporated into the
Pl of Vrabieet al. (2009 as shown in Algorithm 1.

In Algorithm 1,Vi(%) = % B x; is the value function for
the policyu;. Note that ifw(t) = O for all the iterations, Algo-
rithm 1 becomes the PI &frabieet al. (2009. Now, we will
prove the stability and convergence of Algorithm 1. For no-
tational convenience, defifg, M;, andC; asA := A—BK;,

M; := S+ K{"RK;, andC; := ||RKi|| /Am(M). Then, (24) with
U = —Kjx can be represented &s="Aix+ Bw.

Lemma 3 If A is stable, then, one step recursi¢a8)-
(30) of Algorithm 1 is equivalent to solving the following
Lyapunov equation for;P- O:

(A)T

R+RA=-M (31)

Proof. Assume thatd is stable. Then, foM; > 0, there
is B > 0 such that (31) holds. Considering the Lyapunov
functionVi (x) = X' Px and its derivative; (x) = X [A'R+

PAi]x + 2ul, ;Rwalong the system = Aix+ BW, one has

T T
/ X Sx+u'Ry dt :/ X Mix; dt
t t

t+T .
—/ Vi(xr) —2x" RBw dt
t
=Vi(%) —Vi(%41) + 2% (t,T),
which completes the proof.O

Theorem 1 Suppose S- 0 and (M, u;) is updated by Al-
gorithm 1. If the initial policy 4 is stabilizing, then, Ais
stable and the closed-loop syst&m Ajx+ Bw is uniformly
ultimately bounded (UUBYi € N, with each ultimate bound
|| < 2wmC; for i # 1. Furthermore, as i+ o, Vi and y
converge to the optimal solution"\and u, respectively.

Proof. This is proven by mathematical induction. First, as-

— Algorithm 2: e-Approximate Integral Q-learning

1 LetHPl] =0andu= J£(s)[— (Hg x+Rw| be any stabilizing

policy where.Zf (s) = (esR+H[ ])
2:i+0
3:do {
4iii+1
5: Letw; be any nonzero exploration.
6: Apply the inputu= 7€ (s)[ — (H{'2 Tyt Rwj to the system

X = Ax+ Bu.
: Policy Evaluation: Find Q (xt U, &) =2z Hfzt satisfying

QY (x. . £) + 245 (t, T, ) (32)
T 4
= /’[ [C(X7 U) +QI (X> u, E)]dT+Q|[I] ()(t+T>LJT+T>E)7

~

4T : :
where®;(t, T,&) = / [xT Hw-uT Hg]zw] dr.
K

8: Policy Improvement:
TE(s) = (esR+-HL)) 1 (33)
u=7(s)[— (HI)Tx+Rw (34)
9: } until ||HE —HE || <.
dateVi(x) = X Rx for thei-th systenx = Aix+ Bw. Then,

taking the time derivative ofj(x ) and following the similar
procedure olVrabie et al. (2009, one obtains

Vi(x) < —x" Mix— 2x" RK; w (35)
where Lemma 3 provides the substitution of (31) in the
procedure of the derivation. Sin&> 0 is assumed; is
obviously positive definite, so one has from (35)

Vi) < —=Am(M;) X[+ 2w [RKG[[X] . (36)
ThereforeVi(x) < 0 holds forx satisfying||x|| > 2wy - C.
By Lyapunov’s theoremKhalil, 2002 and induction, this
provesA is stable and the system= Ax+ Bw is UUB
with the ultimate bound &, C;, for all i € Z,. Now, by the
equivalence of (31) andleinman(1968's Newton method,
the convergenc¥; — V* andu; — u* can be proven under
an initial stabilizingu; andS> 0 (Vrabieet al, 2009. O

3.2 e-Approximate Integral Q-Learning

By applying Algorithm 1 to the system (22) with the
e-integral Q-function (11), we derive in this subsectien
approximate integraQ-learning which is shown in Algo-
rithm 2 as an approximate version of the proposed integral
Q-learning. When Algorithm 1 is applied to (22) and (11),
the virtual policyv =v; ati-th iteration is given by

vi= R YHL ) Tx—R KL Y. (37)

Then, one obtains (33)—(34) by substituting (37) into (22)

sumeA is stable and consider the Lyapunov function candi- and applying Lemma 1. In Algorithm ZQ,](xt U, &) =



Z I_—|fzt_ is th_ee-int(_agraIQ-fur)c_:tion for the policy (33)—(34)
ati-th iteration, withH¢ partitioned as

[i] (i

HE = [Hll SHﬁ] (38)
* EH5,

which is actually the performance index (11) for the system
(10) whenv = v;. In (32) of line 7,Qi(x,u,¢€) is defined
by Qi(x,u,€) = viTR\4 and can be considered an estimate
of the e-approximateQ-function ati-th iteration (see the
definition of Q*(x,u, €)). In addition, by substituting (37)
into Qi (x,u, &) = Vv Ry, it can be represented as the quadratic
form Qi(x,u,&) = z' Mjzwhere

(i1

i-1
Hi, b

R(H},

*

)T HZI[.Z ]R 1H[ 1]

M B 1
hishe

By Theorem 1 and Lemma 3, one can see the following
three key properties of Algorithm 2 which are essentially
employed to derive exact integr&l-learning in the next
subsection:

1. Algorithm 2 guarantees the stability and convergence to
(u8)* andQ*(x,u, &) by Theorem 1. In this case, the cor-
responding ultimate bound in Theorem 1 becoffids<
2wy Dj whereD; is defined as

I[(H ™

2. According to the recursion (31) in Lemma 3, when the
initial policy is stabilizing,Hf obtained by Algorithm 2
satisfies the recursion

D;:

)T (Hyy )T/ Am(Z+y).

FTHE + HEF = —Mi— 2, (39)

whereF; :=F — G*R1GfH¢ ,. Furthermore, decompos-
ing (39) block-wisely, one has the following set of recur-
sive matrix equations:

ATH + HEA = HE, PRHIDT +HERHE )T

YR HEY)T g (40)
eATHI + HllB— (HIS YR + HIR1HIH)

= —H, TR, (41)
e(BTHL+ HIB) — [Hy, 'R MHZ + HpR MHy, )

= —HLURHL YR (42)

3. Algorithm 2 guarantees the monotonicity <OH® <
Hf . <Hf ie,

0< Q (% ) < QY (x, . €) < QY (%, 8). (43)

This can be obtained by the monotonicity idfeinman
(1968's method and its equivalence to Algorithm\Ir@-
bie et al, 2009. By (43), in the sense of minimizing

—-Algorithm 3: Integral Q-learning for Adaptive LQR

1: Letu; = —K1x lme any stabll %lng pollcy for (2).
2:i+ 0 and seHj; =0 andH;; = RK/.

3:do {

4iii+1

5. Letw; be any nonzero exploration.

6: Apply the inputu = u; with explorationw; to (24).
7: Policy Evaluation: Find HH and sz satisfying

i]

4T
X H[']xt+2¢| (t,T)= /t (X, i) AT+ X, TH T, (44)

U Tyl
where®;(t,T) :/t X' Hjow dr.
8: Policy Improvement:
Kit1= Rfl(HE]z)T, Uip1 = —Kip1x, (45)

9: } until [H}}—HY )+ 0 —HE Y < .

Qi (x,u,€), the policyu becomes better as the iteration
runs. Moreover, from (43), one has

)
il

0<Hi <HIM <
0<H5,<HLY <

(46)
(47)

for all i € Z,. The former is obtained by letting = 0
in (43), and the latter by letting = 0 in (43). From this,
we have the following essential lemma:

Lemma 4 If HI] is evaluated by Algorithm 2 with the

22 '
initial matrix Hg = H3,, then, I—g]z = HJ3, holdsVi € N.

<< Hy <H
=H5. O

k=)

Proof. If Hg =HJ,, then, 0< H3,

H3, holds by (47), stHj = HL = -

N

Remark 2 While Algorithm 1 does not require the knowl-
edge ofA, it needs the known matriB. On the contrary,
by virtue of the additional input dynamics (21), Algorithm
2 does not need the knowledge of both matriéesndB.

3.3 Integral Q-Learning: True Adaptive Optimal Control

Based on Algorithm 2 and its key properties, we now
derive the novel integraB-learning algorithm for CT LTI
system (24) with the exploration;. The key distinction of
the resultant algorithm from Algorithm 2 is that it does not
require the additional input dynamics (21) and guarantees
the convergence to the true LQR solutiof$(x) and u*.
Note that by the stability of Algorithm 27%(s) is always
stable, so that one can limit— 0" while maintaining the
stability of (34) Kokotovicet al., 1986).

Lemma 5 Consider Algorithm 2 in the limi¢ — 0*. Then,
ase — 0', the followings holdvi € Z.:

1) Z%(s) — (H) 1, Q(x,u,e) — x"HlIx

2) Z5(9) - (Hi']2 )TX+RwW — uj + (Hg]z)_lRW



where y= —(HI)“1(HI)Tx.

Proof. The first part is obvious if one considers the limit
e — 0" of (33) and (38), and the second part is the trivial
application of the first part to (34).0

Now, let Qi(x,u) be the approximat®-function in the
limit, that is, Qi(x,u) := lim,_,o+ Qi(X,u,&). Then, the ap-
plication of Lemma 5 to (32) in the limig¢ — 0 yields

. t+T . .
o X Hilx + 2/t [XT Hw+ uTHg]ZW} dt

4T ,
- /t e, u) + Qix )] dr+ X rHlxr,  (48)

ou= U+ (H)Rw (49)
which can be further simplified by noting that [jmq+ H5, =
Hz2 = H3, = Rholds by Lemma 2 and thus, that if one has

Hg =R, then,Hg]2 = R holds for alli € Z, by Lemma 4.

Therefore, substitutinglg]2 =Rinto (48)—(49) and rearrang-
ing the equations yields the true integ@llearning shown
in Algorithm 3 for the system (24) with an exploratiog.

Now, for notational convenience in the analysis of Algo-
rithm 3, redefinelR, K, A, M;, Ci, and D; with abuse of
notations as

R =H, Ki=R'HR )T, (50)

A = A—BK,;, M := S+ K'RK, (51)
_ IRk | _ IRIKi 1]

G = Am(M;)’ Di = An(Z+T) (52)

Here,M; > 0 holds if S> 0, which further guarantees+
M; > 0 by Schur complement of (53). Note that for Algo-
rithm 3, the matrice$§l; andX +IN; are represented as

R]7 2+ R

} . (53)

I

R 2R

*

{KFRN KT i KT

Here, consideringH;; = (K*)TRK* and Hj, = (K")TR,
one can see from (6) and (53) that fmk«M; = H*,

i.e, Qi(x,u) — Q*(x,u) as Ki — K*. This implies under

Ki — K*, T; is an approximate oH* at i-th iteration.

By the application of Theorem 1 to Algorithm 3 with
S> 0, the stability and convergentg — K* andP, — P*

are all guaranteed with the corresponding ultimate bound
[IX|| < 2wmD;j. Therefore,Qi(x,u) obtained by Algorithm

3 surely converges t@Q*(x,u). Furthermore, the following
lemma allows to investigate the further properties regeydi
Algorithm 3.

Lemma 6 Under the notation$50)+52), assume Als sta-
ble. Then, one-step recursiqd4)45) of Algorithm 3 is

equivalent to solving the following matrix iterative fortau

o=,
ATHL A = M,

(54)
(55)

Proof. Note that Algorithm 2 is equivalent to solving the
iterative formula (40)—(42), and that Algorithm 3 is the
limiting casee — 0 of Algorithm 2 with the substitution
of Hg]z =R for all i € Z,. AssumingA; is Hurwitz, tak-
ing the limit ¢ — 0" of (41) and (42), and substituting
Hg]z = ng’l] = Rinto the results yield (54) an& =R, re-
spectively. Therefore, substituting (54) into (40) and con

sidering the definitions oK; and A;, one has (55), which
completes the proof. O

With the notations (50)—(52) and Lemma 6, the same
procedure of the proof of Theorem 1 also proves the stability
and convergence with eatith ultimate bound x|| < 2wuCi.
Furthermore, sinc® > 0 is guaranteed bg > 0, B can be
obtained by (54) aB = (H.})~*H!). The following theorem
states all the results from the above discussions with the
notations (50)—(52).

Theorem 2 Suppose S- 0 and (R,K;) defined by(50) is
updated by Algorithm 3. Then, the followings hold under an
initial stabilizing policy u:

e A is stable and the closed-loop systam Aix+ Bw is
UUB for all i € N, with each ultimate boun(ix|| < 2wy -
min{C;,D;} fori # 1.

e Asigoes too, (R,Ki) and Q(x,u) converge taP*,K*)
and Q(x,u), respectively.

e B can be expressed as:B(Hﬂ)*le]2 foralli € N.

Remark 3 Algorithm 3 does not contai\ and B explic-

itly, which implies that the iteration can be executed with-

out the knowledge oA andB. Instead, the exploratiow

is needed to learn the parameters of the controller. This ex-

ploration corresponds to the probing noise in QTearning

(Al-Tamimi et al, 2007 Bradtke & Ydstie 1994 Lewis &

Vamvoudakis 2010 as well as the exploration in a finite

MDP (Powell 2007 Si et al,, 2004 Sutton & Bartg 1998.

Remark 4 According to Theorem 2B can be obtained by
Algorithm 3 asB = (Hﬂ)*le]2 after Pliteration. AfterBis
obtained, other algorithms such as explorized PI (Algarmith
1) and the PI ofVrabie et al. (2009, can be also used to
find the solution®* andK* online.

3.4 Online Implementation

To implement Algorithm 1 and 3, the iterative formula
(28) and (44) should be modified by using the properties



among Kronecker product and the operators(yeand

Here, note that the largegh, the smaller bounds (60)—(61)

vect(-) already listed in Section 2.1. By using those prop- the relative errors have. In (61), the PBpbf orderNg > N

erties, we hava’ Bx=X"T'vec (R) and

t+T T4l t+T T i
/t X' Hpow dr = [/t (W X) dr]veo(HlZ)

t+T t+T
/ X" RBw dr = [/ (BW®X)TI‘dr}vec"(P|)
t t

is desirable to preventy it a1k || from being zero.

Remark 6 The condition ranke?) = g, + nmof Algorithm
3 is less conservative than that of the existing@earning
(Lewis & Vrabie, 2009 whereN > qnm iS necessary for
updating the DTQ-function.

In the sequel, we focus on Algorithm 3 and give a condi-

Now, using the above expressions, both (28) and (44) cantion for PE ofay. This can be easily extended to Algorithm

be rewritten for anyk € M by a general compact form

ay 6 = Yk (56)
wherey := fttj(‘f_m c(x,u;)dt. Here, 6 and ay are de-
fined as6 :=vec (R) anda(t) := " [% (1)1 — Kokt +

tt:(lfl 17 Bw®xdt] for (28) of Algorithm 1, and

T

6 := [(vec'(HI)T, 2ved (HL))] (57)
T t+kT - T
aki= | Resgevr —%exr) T [ (wexTdr| (58)
t+(k=1)T

for (44) of Algorithm 3. Here, we should find at each it-
eration the uniqueNmi, parameterss € RNmin satisfying
(56). Here,Nmin = g, for (28) in Algorithm 1 andNmyin =
On+ nmfor (44) in Algorithm 3. However, there is only 1-

dimensional equation (56), so that the uniqueness of the so-

lution is not guaranteed. This kind of difficulty can be salve
by least squares (LS) methodl{Tamimi et al, 2007 Lee
et al, 2009 Vrabie et al, 2009. In this paper, we exactly
evaluated, at each iteration by solving the LS equation:

6=(ad") A, (59)
where o = [a1 -+ an] and @ = [y; .- yN}T for
N > Npin. For the LS (59) uniquely solvable? should have
the full-rankNmin andN > Npin is obviously necessary for
rank(</) = Nmin. Note thate7 /T and /% are expressed
asa /T =3y ool anda? = 3N oy, re-
spectively. By Proposition 3y should be persistently excit-
ing at least with ordeNm;, for the existence of.«/.«/T)~1
which is equivalent to ranf') = Nnin.

Remark 5 if ay is persistently exciting with ordeNmn
and.«7./7 and&% are perturbed to7 /T + Ao/ /T and

AU + DNo/? by unexpected noises or uncertainties, result-

ing in the perturbatiorg, + Ag; by (59), then, by (27) and
the argument of linear algebra, the erfd is bounded as

AG|

AG from Aot /T _liaail < |oet 2T , (60

06 fromaw 153 o _BBTTI gy
161~ Ball 31ig" ket Vi |

1. Suppose the exploratiom satisfies Assumption 2, and
hencew: = wy_1 holds over the intervalt + (k—1)T, t +
kT). Then, considering (25) and the notatiogsandw in
Section 2.4 withr =t, we have

/ WX AT = W1 ® B X1, (62)
t (k-1)T
A% = Ay bx 1+ =11 BY | Am o, (63)

where the superscrigt] implies that the matrix is formu-
lated with the control gaifk = K;. For the further discus-
sion, letéy.| be defined agy. |1 := Wik ® Xk Then,qk

is expressed agx = &Xx Where& = diag{—rT,I ® E([j']}
and xi == [A%} &7 ]T. Now, noting &1 = (I ®A£,'})(Ek+
Awy_ 1% 1)+ (I ® B([j'])(wk ®Wk_1) and combining this
with (63), the following DT dynamic equation is derived.

Xkl = F Xk +9 & (64)

P Al O @ =By 0 o
where 0 1eAl ]’ 0 1xA} 1o8]

= [Aa] |, (AW 1@%1)T, (We@wie_1)T]T

Proposition 4 Consider the LS solutiofb9) with (57)58)
for Algorithm 3. Suppose N satisfiessNn(n+m) and (64)
is controllable. Ifg is persistently exciting with ordern+
m), then,ay is persistently exciting with order,g- nm.

Proof. First, note that if (64) is controllable andgy
is persistently exciting with orden(n+ m) = dim(xx),
then, [x1 --- xn] with N > dim(x) always has the
full rank n(n+ m) (Willems et al, 2005 Corollary
2). Since rank&) = gn+ mn we have ranke) =
rank(&'[x1 -+ xn]) = rank(&’) = gn + mn, which implies
the PE ofay. O

Proposition 4 states thgk should be at least persistently
exciting of order dinf) to guarantee the uniquenessthf
in (59). For this persistently excitingx, a random explo-
ration wy sampled from a probability distribution can be a
rational choice since a random input is persistently exgiti
of any order(Willems et al,, 2005 so that it could increase
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Fig. 1. (a)(d)(e): simulation results for the integ@dearning; (b):simulation results for the explorized PtwB estimated byQ-learning;
(c)(f):simulation results for the Pl (Vrabiet al., 2009) withB estimated byQ-learning

the order of persistent excitation @f. solution:
By virtue of the differential equationg(t) = c¢(x,u;) and
W(t) = (Xwe x)T for some matrixX, the integral terms 0.4600 06911 00519 04642
in y(t) and a(t) can be simplified asf"" c(x,u)dr = b+ _ s _ | 06911 18668 02002 05800
V(t+T)=V(t) and 7T (Xwex)Tdr = W(t+T) - W(t), 1171 00519 02002 00533 00302 |
respectively. 0.4642 05800 00302 22106
K* =R(Hp)"

—[ 07135 27499 07323 04142].

4 Simulation Results I . .
and we assume zero initial condition which is not accept-
able in the absence of exploratiow. He_re,vvt is chosen

In this section, a numerical simulation for the following @S =Wk fort € [T, (k+1)T) wherewy is sampled from
online load frequency control of a power systeviigbie et a uniform distribution —ww, W] W'thf‘g’)VM determined by

2009 is carried out to verify the effectiveness of the Wm =Xu/2maxXGC;,Di} with xy = 10"~ to guarantee the

UUB ||x|| < xm by Theorem 2. Herewy cannot be deter-
mined before the first iteration since the systefB) is

proposed algorithm. _
unknown. So, at the first iteratiomy = 102 is used for the
exploration. TheQ-learning parameters are setTio= 0.05

—0.0665 115 0 0 0 .
0 -25 25 0 0 [s] andN = Nmin = 14 so the LS solution (59) is obtained
A=| _95 0 -13736-13736| ° |13736|°  ©VEIYNT=14x005=07]s]. .
The simulation results for integraD-learning are de-
0 0 scribed in Figs. 1(a),(d),(e). As can be seen from Figs

0.6 0 0
In this simulation, the parameters of the value function (2) 1(a),(d),R andK; are updated simultaneously and shown
are given byQ =1, R= 1 which yields the following LQR to converge. Fig. 1(e) shows the state trajectory explored

10



by wy wherew; = 1072 yields a rather heavy oscillations Anderson, B. D. O. & Moore, J. B. (198%)near optimal

before the first iteraion, but after[s], the UUB ||x|| < control, Englewood Cliffs, NJ: Prentice Hall.

2wy min{C;,D;} is used to determineny, resulting in the Baird Ill, L. C. (1994) Reinforcement learning in

very small bounded oscillations. After the parameters con-  continuous-time: advantage updating, Rroc. of ICNN,

verge (6.3 [s]), the exploratiow, is not applied to the sys- 4, 2448-2453.

tem anymore, and the states become stationary and convergBalakrishnan, S. N., Ding, D., & Lewis, F. L. (2008) Issues

to zero. on stability of ADP feedback controllers for dynamical
Next, the explorized PI (Algorithm 1) and the Pl dfa- systemsJEEE Trans. Syst., Man, Cybern.-Part B,(38

bie et al. (2009 are simulated aftdB is obtained at the first 913-917.
iteration, which is illustrated in Remark 4. Sinbe= Npin Bertsekas, D. P. & Tsitsiklis, J., N. (1998)euro-dynamic
(Nmin = 10) is used for both Pl algorithm, they can find LQR programming Belmont, MA: Athena Scientific.
solution in a reduced time. Here, Pl gfabieet al. (2009 Bertsekas, D. P. & Tsitsiklis, J., N. (2005) Dynamic pro-
is inherently unable to solve zero initial condition prahle gramming and suboptimal control: a survey from ADP to
alone, but with the excitation made by telearning agent, MPC, European Journal of Control, 11310-334.
Pl of Vrabieet al. (2009 can find the LQR solution as shown Bradtke, S. J. & Ydstie, B. E. (1994) Adaptive linear
in Fig 1(c). However, as the state becomes stationary (Fig. quadratic control using policy iteration, Iroc. ACG
1(f)), some deviation from the solution is introduced after = 3475-3479.
8.2 [s] since the poor excitation causes the large numericalDong, W. & Farrell, J. A. (2009) Adaptive approximately
errors. On the other hand, as shown in Fig. 1(b), this kind of  optimal control of unknown nonlinear systems based on
problem never happen when the exploratwnis injected locally weighted learning, InProc. CDG 345-350.
to the system by explorized PI agent. Doya, K. (2000) Reinforcement learning in continuous-time
and spacelNeural Computation, 1,2219-245.
Kaelbling, L., P. & Moore, A., W. (1996) Reinforcement
learning: a surveyJournal of Artificial Intelligence Re-
) ) ) ) search, 4 237-285.
This paper proposed the explorized Pl and combined with kpajil, H. K. (2002) Nonlinear system$rentice Hall.
the introducece-integral Q-function, presented an integral | ewis, F. L. & Syrmos, V. (1995Pptimal contro) 2nd ed.
Q-learning scheme which solves CT LOQR problem in real  New York: Wiley.

time, without knowledge about the system dynanficand Kleinman, D. (1968) On the iterative technique for Riccati

5 Conclusions

B. By virtue of the exploration & singular input perturba-  equation computation$EEE Trans. Automatic Control,
tion, the assumption of perfectly knovBwas relaxed, and 13(1), pp. 114-115.

the stability and convergence was mathematically proven, Kokotovic, P., Khalil, H. H., & O'Reilly, J. (1986) Singular
provided that the initial policy is stabilizing. For the iep Perturbation Methods in Control: Analysis and Design,

mentation via LS, the PE closely related with explorations  academic Press, Inc.

was investigated and a sufficient condition for guarantee- | angelius, T. (1997)Reinforcement learning and dis-
ing the solvability of LS was given. Though there are still  tipyted local model synthesi®h.D. dissertation, Swe-
a number of remaining works concerning explorations, PE,  gen;: Linkoping University.

robustness, and implementations, these works can be proi ge J. M. & Lee J. H.(2004) Approximate dynamic program-

vided as a basis for developir@learning & adaptive op- ming strategies and their applicability for process con-
timal control schemes in CT framework, with stability and trol: a review and future directiontt. Journal of Cont.,
convergence considerations. Auto., and Syst. (IJCAS)(3), 263-278.

Lee, J. VY., Park, J. B., & Choi, Y. H. (2009) Model-free
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